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Abstract

We estimate real US GDP growth as a threshold autoregressive process, and construct con-
fidence intervals for the parameter estimates. However, there are various approaches that can be
used in constructing the confidence intervals. We construct confidence intervals for the slope coef-
ficients and the threshold using asymptotic results and bootstrap methods, finding that the results
for the different methods have very different economic implications. We perform a Monte Carlo
experiment to evaluate the various methods. Surprisingly, the confidence intervals are wide enough
to cast doubt on the assertion that the time-series responses of GDP to negative growth rates are
different than the responses to positive growth rates.
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1. Introduction

Threshold autoregressive (TAR) models are popular, providing a straightforward,
economically appealing, and econometrically tractable nonlinear extension of the
linear autoregressive (AR) model. TAR models are particularly suited for time-
series processes that are subject to periodic shifts due to regime changes.
Examples of early applications include Burgess (1992), Cao and Tsay (1992),
Enders and Granger (1998), Galbraith (1996), Hansen (1997), Krager and Kugler
(1993), Potter (1995), and Rothman (1991).

Although there have been a number of important developments in the
asymptotic theory for estimation and inference in TAR models [e.g., Hansen
(1997, 2000), Chan and Tsay (1998), and Gonzalo and Wolf (2005)], there has
been little research concerning the finite sample properties of these procedures.
There are a number of ways to perform inference in TAR models and we explore
the small-sample properties of some of these methods using Monte Carlo
experiments. One complicating factor is the need to know if the process is
continuous at the threshold. The issue is important as a comparison of Hansen
(1997) and Chan and Tsay (1998) indicates that the distributions relevant for
inference in a continuous (C-TAR) model are different from those in a
discontinuous (D-TAR) model. Whereas economic analysis may predict the
existence of different regimes, it may not be clear whether a C-TAR or a D-TAR
model is most appropriate. Enders and Siklos (2004) show that it is the combined
values of the intercepts, threshold and autoregressive coefficients that determine
whether the model is continuous at the threshold. Although a C-TAR model can
be viewed as a restricted version of a D-TAR model, their work shows that testing
this restriction is problematic since conventional test statistics are not
asymptotically pivotal (i.e. the asymptotic distribution depends on nuisance
parameters).

To address some of these issues, we apply Monte Carlo methods to study
the small sample coverage properties of confidence intervals for the slope
coefficients and the threshold parameter in the class of first-order, stationary, two-
regime threshold autoregressive models. The procedures we consider include
approaches suggested by asymptotic theory and bootstrap methods. We show that
these confidence intervals have poor coverage in a variety of conditions. As a
result, the appropriate way to conduct inference in TAR models in small samples
is unclear, particularly when the threshold is unknown, and our results cast doubt
on some standard methods. Economic theory should provide guidance for
choosing among D-TAR or C-TAR alternatives since there seems to be no other
obvious way of choosing one over the other.

We consider the implications of our results for the behavior of real US
GDP growth, one of the most widely studied time series. The consensus opinion
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seems to be that the growth rate of real US GDP is a nonlinear process, perhaps of
the threshold autoregressive variety. Several papers, such as Kapetanios (2003),
Peel and Speight (1998) and Potter (1995), indicate that GDP behaves very
differently in periods of high growth than in periods of low growth. However, we
show that different methods of constructing confidence intervals lead to different
implications concerning the way that GDP behaves in expansions versus
contractions. The confidence intervals for the alternative persistence parameters
overlap and the location of the threshold value is unclear. As a result, concluding
that there are different degrees of persistence in positive versus negative growth
regimes may be problematic, throwing into doubt some widely held beliefs
concerning the properties of US real GDP growth.

2. The TAR Model

The simplest D-TAR model can be formulated as follows:

vi=(a+ ayc)li+ (Bo+ piye) -1+ &, t=1,...,T (2.1)

where [, is the indicator function defined in terms of the threshold parameter 7 as

I _ 1 lf yzfd >T
S (U AP
such that d is the delay parameter, and the &’s are i.i.d. (0O, 02) random variables.
We assume that o> < o and that the autoregressive parameters in (2.1)
satisfy stationarity conditions. Sufficient conditions for stationarity are: 0 < o < 1
and 0 < S < 1. Petrucelli and Woolford (1984) provide further discussion of
conditions for stationarity and ergodicity.

We will also consider the inference problem for the following C-TAR
model that is a constrained version of (2.1):

vi= 7T+ (V1 — DL+ fiyer — (-l + &, t=1,...,T (2.2)

where 7 denotes the thresholds parameter, «; and f; are slope coefficients that
satisfy stationarity conditions, and I, and & are stochastic processes defined as in
2.1).

Model (2.1) has the two attractors: /(1 — ) and Sy/(1 — £1). Model (2.2)
implies that y; has a unique long-run equilibrium, which is equal to the threshold
parameter. The short-run dynamics of the C-TAR model depend on whether the
system is above or below the long-run equilibrium. In some applications, this
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version of the model may be a more “natural” representation of the TAR model
than (2.1). Note that, in contrast to version (2.1), version (2.2) implies that y; is
continuous in the neighborhood of the threshold.

Extensions of these models allowing for unit roots and higher order
autoregressive terms have been considered in the theoretical and applied literature.
Note that if &; = £ (and in (2.1), o = o) the D-TAR and C-TAR models collapse
to an AR(1) model. However, testing this restriction is complicated by the failure
of 7to be identified under the null hypothesis.1

The ordinary least squares estimator of «; and f; is asymptotically
efficient when the threshold parameter is known, or when it is unknown but is
replaced by a consistent estimator. In particular, conditioning on 7, or a consistent
estimator of 7, the least squares f-statistics associated with «, o, fo, and f
converge in distribution to standard normal random variables. As described in
Enders (2004), a grid search over all potential thresholds and delay parameters
yields a consistent estimate of the threshold. Consequently, the standard textbook
approach to confidence interval construction provides intervals with
asymptotically correct coverage.

However, even in the special case of the linear AR(1) model, the OLS t-
statistics for the slope coefficient will not be approximately normal or even
approximately pivotal in small samples, particularly for values close to the unit
root boundary. Monte Carlo simulations by Hansen (1999) illustrate the poor
finite sample performance of normal confidence intervals, bootstrap-z, and
bootstrap-percentile confidence intervals for the AR(1) model. We will apply
Monte Carlo simulations to evaluate the finite sample performance of these
intervals for the slope coefficients and for the threshold parameter 7in the D-TAR
and C-TAR models.

Confidence interval construction for the threshold parameter 7 has been
considered by Hansen (1997) for model (2.1), by Chan and Tsay (1998) for model
(2.2), and Gonzalo and Wolf (2005) for both models. These procedures involve
inverting a likelihood ratio statistic constructed from a model estimated using a
consistent estimate of the threshold. Hansen’s procedure is based on the limiting
distribution of the likelihood ratio statistic for model (2.1), a nonstandard
distribution derived by Hansen (1996). Chan and Tsay (1998) show that the
limiting distribution of the likelihood ratio statistic is chi-square for model (2.2).
The difference in the asymptotic behavior of the likelihood ratio statistic
according to whether model (2.1) or model (2.2) is assumed is what motivates our
consideration of both models. Gonzalo and Wolf (2005) use sub-sampling to
generate confidence intervals for an unknown threshold for both the D-TAR and

! For further discussion of this issue, see Andrews and Ploberger (1994) and Hansen (1996).
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C-TAR models. They also propose a test for continuity but coverage probabilities
are good only for relatively large samples (e.g., 7= 500).

We apply Monte Carlo simulations to evaluate the finite sample
performance of these procedures as well as intervals constructed from
bootstrapped distributions of these (asymptotically pivotal) statistics. Specifically,
we will examine the finite sample properties of the following types of confidence
intervals for the slope parameters:

. The so-called ‘normal approximation’ uses intervals constructed
from the #-statistics for o; and £ obtained from a standard ¢ distribution.

. Bootstrap-percentile confidence intervals. For example, a 90%
confidence interval for a; (1) can be constructed from the lowest 5% and
highest 95% of the ordered bootstrapped estimates of ¢ ().

. Bootstrap-t confidence intervals (which assume that the #-statistics
are approximately pivotal though not necessarily student-7).” For example,
a 90% confidence interval for ¢; () can be constructed from inverting the
lowest 5% and highest 95% of the ordered bootstrapped ¢-statistics for the
null hypothesis a; = 0 (5, =0).

Confidence intervals for the threshold parameter itself will be constructed
from inversion of the likelihood ratio statistic using its asymptotic and
bootstrapped distributions. In addition, the bootstrap percentile methods will be
applied to construct these intervals.

3. Confidence Intervals

For each parameterization of the TAR model, 1000 realizations of yy, ..., yr were
generated for T = 236.% The threshold parameter z was always set to 0, the initial

* Bootstrap confidence intervals are discussed in detail in Efron and Tibshirani (1993). The grid-
bootstrap approach described in Hansen (1999) and the bias-corrected bootstrap approach
described in Efron and Tibshirani (1993) were designed to improve the performance of the
bootstrap-t and bootstrap-percentile methods, respectively. We did not consider these approaches
for practical reasons. Our Monte Carlo experiments were very time-consuming when the threshold
parameter was treated as unknown because of the nonlinear estimation problem that had to be
solved for each bootstrap sample.

? Note that 236 equals the number of observations in our GDP data set. In an earlier version of this
paper, we reported results using 7 = 100. The results of these simulations are available from the
authors on request. Also note that in simulating TAR processes, it is possible that the constructed
series never crosses the true threshold. This turned out to be especially true for values of 5, equal
to 0.9 and 0.95. Unless there are two observations on each side of the threshold it is impossible to
fit a TAR model to the data. In practice, researchers searching for an unknown threshold typically
discard the largest and smallest 10 or 15 percent of the ordered data from their search. If one of our
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value yp was set to the unconditional mean of the process, and the &’s were drawn
from the standard normal distribution. Each series was generated for 7 + 100 data
points and the initial 100 observations were discarded. For each of the realized
series, we used the standard grid-search method described in Enders (2004) to find
a consistent estimate of the threshold.* The r-statistics and student-¢ distributions
were used to construct confidence intervals with nominal coverage equal to 0.75,
0.9, 0.95, 0.975, and 0.99 for each of the two slope coefficients. Next, for each of
these y;, series, the estimated slope coefficients and estimated value of 7 were used
to construct 1000 bootstrap samples in order to construct the bootstrap-percentile
and bootstrap-t intervals. Hence, there are 1000 bootstrap samples for each of the
1000 generated y; series. Actual coverage percentages were computed as the
proportion of instances in which the true slope coefficients fell into each type of
constructed interval. Note that for each realization of the y; process, the bootstrap
samples used to construct the bootstrap-percentile and bootstrap-t intervals were
generated using the estimated threshold rather than the true threshold and that the
threshold parameter was re-estimated (along with the intercept and slope
coefficients) for each bootstrap sample.

These simulations were very time-consuming because of the need to
search for 7in each of the bootstrap samples. Therefore, we used a relatively small
set of parameter combinations for the data-generating process. Specifically, the
threshold parameter 7 was set to zero, the slope coefficient «; was set to 0.3, and
the slope coefficient ; was sequentially selected from {0.6, 0.9, 0.95}. For the D-
TAR model (2.1) we set the intercepts o and £ equal to 0 and 0.9, and for the C-
TAR model we set o = = 0.

3.1 Confidence intervals for the slope coefficients in the D-TAR model

The simulated coverage probabilities for the slope coefficients using the three
methods of interval estimation are presented in Table 1 for the D-TAR model.
Consider, for example, the D-TAR model with 7=236, o, =002, =0.3, =0,

= 0.9 and S, = 0.6. The nominal 90% confidence interval constructed using the
normal approximation (i.e., ﬁl + s.e.(ﬁl)*1.64) included the true value of ¢ in

87.1% of the trials and included the true value of £ in 78.1% of the trials. As
such, these confidence intervals are “too narrow” in that the simulated coverage is
smaller than the nominal coverage. Notice that for these same parameter values,

simulated series did not contain at least three points on each side of the threshold, it was discarded
and replaced with another simulated series. We applied this rule throughout this study, including
the bootstrap simulations.

* This is the estimation procedure used in Chan (1993) and Hansen (1997). The meaningful
candidates for the threshold are the observed values of the data series.
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TABLE 1: Simulated Coverage Probabilities for the Slope Coefficients in the D-
TAR Model

a=03,7=0,00=0, f=0.9, T=236

Nominal Normal Bootstrap Bootstrap-t
Coverage Approximation Percentile
(24] B o B a B
p=0.6 T5% 71.4 60.5 79.0 69.4 73.8 69.1
90% 87.1 78.1 94.3 87.2 88.1 81.8
95% 92.2 84.6 97.9 93.2 93.6 85.9
97.5% 95.7 89.4 98.9 96.2 95.8 88.7
99% 97.6 92.9 99.6 98.0 97.5 91.1
/=09 T5% 71.9 65.5 74.2 59.9 73.3 74.3
90% 85.9 82.6 91.9 82.7 89.3 89.0
95% 92.0 89.4 96.3 90.9 93.8 94.3
97.5% 95.7 93.6 98.3 95.6 96.2 97.5
99% 97.1 96.9 99.5 98.3 98.0 99.4
=095 T5% 68.4 64.7 75.7 534 77.2 74.3
90% 83.6 81.7 92.6 79.8 90.3 89.1
95% 89.9 89.6 96.7 90.1 95.3 94.3
97.5% 93.9 93.6 98.9 95.1 97.3 97.6
99% 97.1 97.3 99.7 98.2 98.4 98.6

the bootstrapped t-statistic yielded confidence intervals closer to the nominal
values than the normal approximation (88.1 for ¢; and 81.8 for f;). Among the
key points to note in Table 1 are:

. The confidence intervals, constructed using the normal
approximation, are always too narrow in that their simulated coverage is
less than their nominal coverage. Hence, the use of the normal
approximation (i.e., the ‘usual’ #-test) to test the null hypothesis ; = 0 or
S = 0is likely to result in too few rejections.

. The percentile method yields confidence intervals for ¢, that are very
close to their nominal values. Those for S, are generally too narrow,
although they are better than those generated from the normal
approximation. Notice that the coverage properties for f; clearly
deteriorate as the magnitude of £ increases, and improve as the nominal
size of the confidence interval increases.
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. Of the three methods, the bootstrap-¢ generally has the best coverage.
Although tending to produce intervals that undercover, the interval
coverage rates for a; are almost always within one-to-two percent of the
desired rate. Regarding /£, the interval coverage is within one-percent of
the desired rate when £; = 0.9 and 0.95.

We conclude that for the D-TAR model confidence intervals constructed
from the normal approximation were the least satisfactory while the bootstrap-¢
intervals were usually the most satisfactory.

3.2 Confidence intervals for the slope coefficients in the C-TAR model

The simulated coverage probabilities for the slope coefficients of the C-TAR
model are presented in Table 2. As in the D-TAR model, the intervals constructed
from the normal approximation perform the worst. For all cases considered, the
normal approximation yields simulated coverage percentages for both ¢; and £
that are very low when compared to the nominal percentages. Relative to the D-
TAR model, the performance of the normal approximation actually deteriorates
for the C-TAR model. The bootstrap percentile intervals for ¢; work very well
with actual coverage rates almost always within one-percent of the nominal
coverage rates. The bootstrap percentile intervals for f; work reasonably for small
pi1 (.e., fi = 0.6) but very poorly for large f; (i.e., fi = 0.9 and 0.95). The
bootstrap-¢ intervals for f; work very well with actual coverage rates almost
always within one-percent of the nominal coverage rates. While the bootstrap-¢
intervals for a; are not quite as good as those generated using the bootstrap
percentile method, they are reasonable. As such, in applied work the bootstrap-¢
seems to be the best choice among the three methods. Alternatively, it may be best
to use a combination of the two bootstrap methods, using the percentile method
for the smallest slope coefficient and the bootstrap-# for the largest slope
coefficient.

3.3 Confidence intervals for the threshold parameter

Hansen (1997) derived the (non-standard) asymptotic distribution of the least-
squares estimator of the threshold parameter and the likelihood ratio statistic for
inference concerning the threshold parameter in the D-TAR model. Critical values
for these distributions are tabulated in Hansen (1997). Chan and Tsay (1998)
studied the asymptotic distribution of the least squares estimator of the threshold
parameter and the likelihood ratio statistic in the C-TAR model, showing that in
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TABLE 2: Simulated Coverage Probabilities for the Slope Coefficients in the C-
TAR Model

o =03,7=0,T=236

Nominal Normal Bootstrap Bootstrap-t
Coverage Approximation Percentile
(24 B a B ) B
p=0.6 T5% 56.2 62.2 74.9 73.9 76.6 77.0
90% 73.8 79.3 89.7 86.3 92.5 91.0
95% 81.3 87.0 94.8 92.7 95.5 95.6
97.5% 86.7 91.7 97.1 96.2 97.3 97.7
99% 914 94.6 98.9 98.5 99.0 98.7
/=09 T5% 50.5 69.7 72.7 67.5 72.9 74.0
90% 65.1 86.2 89.3 82.1 86.5 89.6
95% 73.8 923 95.0 87.9 91.8 95.2
97.5% 80.1 95.9 98.1 91.3 95.0 97.4
99% 85.5 98.0 99.4 95.6 97.0 98.7
=095 T5% 49.0 69.6 77.9 65.0 70.3 71.4
90% 64.6 86.8 91.2 76.7 86.1 87.5
95% 73.0 92.9 95.4 83.0 91.5 93.8
97.5% 77.9 95.7 98.0 85.8 93.2 97.4
99% 82.6 97.8 99.6 90.2 94.8 98.5

this case the asymptotic distribution of the likelihood ratio statistic is a chi-square
with one degree of freedom.

In this section, we evaluate the finite sample coverage properties of
confidence intervals for 7 constructed using three different procedures. The first
procedure is to invert the likelihood ratio statistic using the asymptotic critical
values. That is, the likelihood ratio statistic to test the null hypothesis that 7= 7 is

SSR(z,) — SSR(7)
SSR(7)
where: SSR(7) is the sum of squared residuals from the regression model (2.1) or

LR(z,) =

(2.2) using a grid-search procedure to estimate zand SSR(17) is the sum of squared
residuals from the regression model (2.1) or (2.2) fixing 7 at . The JSpercent
confidence interval for 7 found by inversion of the likelihood ratio statistic is I'(0)
= {7: LR(7) < C(0)} where C(9) is the olevel critical value from the asymptotic
distribution of LR(t). Following Hansen (1997), we use the convexified region
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F*(é) = [n ], where 7; and 7 are the minimum and maximum elements of I'(),
respectively.

The second procedure is identical to the first except that it uses the
bootstrapped distribution of LR(7) to determine the critical value C(¢). The third
procedure is the bootstrap percentile distribution constructed as the values of 7
falling within the (1-90)/2 and 1-6+(1-06)/2 percentiles of the bootstrap
distribution of 7.

The results for a nominal 90% confidence interval are presented in Table 3
for the D-TAR and C-TAR models. Values for other percentages were found to be
ordered similarly and are not reported here. These results were obtained as part of
the Monte Carlo experiments used to construct the confidence intervals for the
slope coefficients in the TAR models. For the bootstrap procedures, the estimated
threshold from each simulated series was used to generate the bootstrap samples
and re-estimated for each bootstrap sample so as to simulate the bootstrap
distributions of the least-squares estimator of 7 and the likelihood ratio statistic
LR(7)”

According to Table 3, none of the three procedures performs satisfactorily
for the D-TAR model. All three methods over-cover in the sense that the
confidence intervals are too wide. Surprisingly, the bootstrapped likelihood ratio
method has the worst performance—the confidence intervals were so wide they
have 100% coverage for f; = 0.6 and #; = 0.90 and 99.8% coverage for f; = 0.95.
The poor performance of the bootstrap-LR procedure is somewhat surprising since
the likelihood ratio statistic is asymptotically pivotal. The bootstrap-percentile
procedure provides good coverage when f; = 0.6, (simulated coverage is 91.7%)
but not for B = 0.9 or £ = 0.95. The normal approximation provides coverage
rates greater than 96% in all three cases.

In contrast, the normal approximation works best among the three
procedures applied to the C-TAR model. The simulated coverage is reasonably
close to 90% for all three values of f;. The confidence intervals from the two
bootstrapped procedures are far too wide for the C-TAR model. The percentile
method works worse than the bootstrap-LR method when f; is large. Hence, the
normal approximation works poorly for the slope coefficients but works
reasonably well for the threshold parameter (especially in the C-TAR model).

3.4 Estimating the C-TAR model as a D-TAR process

> Note that the bootstrapped values of the likelihood-ratio statistic can be negative since the
estimated threshold for any given bootstrap sample can generate a smaller sum of squared
residuals than the sum of squared residuals obtained from the estimated threshold fit to the original
sample.
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In many applications it is not clear whether the true data generating process is
continuous or discontinuous at the threshold. Since a C-TAR is a restricted form
of a D-TAR model, it might seem plausible to estimate a D-TAR model in the
form of (2.1) and then test whether the restriction implied by (2.2) [i.e., 7= (f -
ap)/(ey - f1)] is binding. However, this strategy is not feasible. Enders and Siklos

TABLE 3: Simulated Coverage Probabilities for the Threshold Parameter
Nominal Coverage = 90-percent

=0, =09, a=03,7=0,T=236
Asymptotic BS - Percentile BS-LR

Approx.

fi= Coverage in the D-TAR Model
0.6 98.0 91.7 100
0.9 96.4 96.3 100
0.95 96.2 98.1 99.8
b= Coverage in the C-TAR Model
0.6 93.1 100 100
0.9 91.6 100 99.8
0.95 87.7 100 93.9

(2004) demonstrate that an F-statistic for the null hypothesis 7= (fy — a)/(aq —
S1) is not asymptotically pivotal. An important issue, then, is to analyze the
consequences of estimating the wrong functional form. We focus our attention on
the case of estimating a C-TAR model in the functional form of (2.1) since the C-
TAR process is nested within a D-TAR model. In contrast, a D-TAR model
estimated as a C-TAR process results in a misspecification error.

We generated 1000 C-TAR series using the parameter set and
methodology described above. However, unlike the results described in Sections
3.2 and 3.3, we estimated each simulated series as a D-TAR process and
calculated the coverage properties of each method of constructing confidence
intervals. The results for the slope coefficients are reported in Table 4. Notice that
the simulated coverage of the normal approximation is always far too low. For
example, for the case of S = 0.6, the calculated coverage using a nominal 90%
confidence interval was only 69.5% for «; and 67.2% for f;. The intervals for the
percentile method were too wide for f; = 0.6 but were generally too narrow for f;
= 0.9 and B = 0.95. The intervals for the bootstrap-t method were always too
narrow.
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A comparison of the results in Tables 2 and 4 indicates the cost of
estimating the over-parameterized D-TAR model when the true data generating
process (DGP) is a C-TAR model. Clearly, the simulated coverage values for the
normal approximation and bootstrap-t methods shown in Table 4 are even
narrower than those shown in Table 2. The percentage differences for the normal
approximation are small. For example, for a nominal 90% confidence interval,
when f; = 0.6, the coverage for a; shown in Table 2 is 73.8% and the coverage
shown in Table 4 is 69.5%. In percentage terms, the losses using the bootstrap-¢
are far larger when a D-TAR model is used to estimate a C-TAR process. As
illustrated by a nominal 90% confidence interval for a;, the simulated coverage
shown in Table 2 is 92.5%, whereas the simulated coverage shown in Table 4 is
71.7%. The results for the percentile method are tricky to interpret since some of
the confidence intervals are too narrow and others are too wide.

TABLE 4: Slope Coefficient Coverage for a C-TAR Model Estimated as a D-
TAR

o01=03,t=0,T=236

Nominal Normal Bootstrap Bootstrap-t
Coverage  Approximation Percentile
(24] B a B o B
p=0.6 T5% 48.7 48.5 86.3 88.4 56.5 55.1
90% 69.5 67.2 98.2 98.0 71.7 73.0
95% 78.7 79.1 99.5 99.4 80.3 82.2
97.5% 86.3 86.6 99.8 99.9 87.1 87.3
99% 92.1 92.3 100.0 100.0 923 90.9
=09 T5% 47.6 49.7 70.4 67.3 53.0 69.3
90% 61.5 70.3 92.3 90.4 70.8 84.6
95% 71.8 79.9 96.3 96.7 77.5 88.9
97.5% 78.5 86.7 97.9 98.6 81.7 914
99% 84.8 93.2 98.6 99.9 86.0 94.5
=095 T5% 43.8 52.8 60.2 55.4 49.9 67.1
90% 58.2 69.0 87.0 83.4 66.7 83.0
95% 66.2 78.1 93.8 93.7 73.0 89.7
97.5% 71.7 86.2 96.5 98.1 77.6 92.0
99% 76.7 92.9 98.3 99.6 81.1 94.7

If we use a nominal 90% confidence interval, the coverage properties for
the threshold parameter are
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Coverage of Threshold Parameter
Asymptotic BS - Percentile BS-LR

Approx.
pi=
0.6 93.9 91.7 100.0
0.9 91.6 87.5 99.7
0.95 85.3 86.5 95.2

Notice that the confidence intervals for the bootstrapped likelihood ratio
statistic are always too wide. The asymptotic approximation and the percentile
methods work similarly--sometimes the intervals are too wide and sometimes they
are too narrow. In comparing these results to those shown in Table 3, it is
interesting that the coverage properties of the percentile method actually improve
when the C-TAR process is estimated as a D-TAR process.

Overall, the losses from estimating the D-TAR model when the actual
DGP is a C-TAR process can be small. The most serious loss involves the
bootstrap- method for the slope coefficients. Nevertheless, if there is little
knowledge of the actual form of the DGP, it seems preferable to estimate the D-
TAR model than a possibly misspecified C-TAR model.

4. Confidence Intervals for TAR Estimates of US GDP

The aim of this section is to compare the various methods for constructing
confidence intervals for the threshold and slope parameters of the real US GDP
series. The time path of the logarithmic change in real US GDP (y,) over the
1947:Q1 to 2006:Q1 sample period is shown as the solid line in Figure 1. It is
quite possible that this series represents a litmus test for nonlinear time series
modeling. For example, Potter (1995) modeled and fit the logarithmic difference
of real US GNP (not GDP) through 1990:Q4 to a threshold autoregressive model
under the assumption that the threshold is known and equal to zero.’

4.1 Model selection
We followed Hansen’s (1999) procedure to test for linearity and, if linearity is

rejected, perform a test to select the appropriate number of regimes for the TAR
model of GDP. The first step in the process is to fit GDP to an AR(p) model.

® In addition, Potter (1995) estimates the model for each regime separately to allow for
heteroskedasticity across regimes, which is straightforward when the threshold is assumed to be
known.
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Figure 1: Quarterly Growth Rate of Real U.S. GDP
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Choosing among lag lengths 1, ..., 8, the AIC selected a lag length of 4,
yielding the following estimated AR(4) model of GDP.” Below, and in what
follows, t-statistics are reported in parenthesis, aic is the sample value of the AIC
and rss 1s the sum of squared residuals.

i =0.006 + 0.298y,.; + 0.139y,, — 0.085y,.3 — 0.108y,4 + & 4.1
(6.25) (4.51)  (2.03) (-1.23)  (-1.64)

aic =-903.13, rss = 0.0195

Next, we fit a two-regime TAR model to GDP by minimizing the sum of
squared residuals with respect to the intercept, slope, threshold, and delay
parameters, maintaining the lag length of four. The estimated threshold was
constrained to require that at least 10-percent of the observations fall above and
below the threshold. This estimator selected a delay parameter of two (as does
Potter 1995) and produced the following estimated TAR model:

7 The Schwartz criteria selected a lag length of 1. In this case, the null of linearity is not rejected
against the TAR alternative. Since our paper is concerned with interval estimation in settings
where TAR effects are present, we followed the path implied by the AIC.
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= 1,[0.006 + 0.320y,; + 0.137y,2 — 0.083y,3 — 0.067y,4 ] (4.2)
4.64) (438) (1.56)  (-1.15) —(0.097)

+ (1 = 1)[-0.003 + 0.208y,.; — 0.909y, — 0.156y,3 — 0.506y,4 ] + &
(-1.01) (1.53) (=3.03) (-0.86)  (=2.79)

I =

t

1i >-0.00167
{ i v, : aic =-918.01, rss = 0.0178

0if y._,<—0.00167

To test the null of linearity against the two-regime TAR alternative, we
used the test statistic
S1 — Sz

F,=T(A22)
2

where S is the sum of squared residuals from the estimated linear autoregression
and S, is the sum of squared residuals from the estimated two-regime TAR.
Following Hansen (1999), we used the bootstrap (with 1000 bootstrap samples) to
estimate the percentiles of the asymptotic null distribution of F,. The value of the
F, statistic turned out to be 22.54 and the resulting p-value was 0.026. Therefore,
we rejected the null of linearity against the alternative of a two-regime TAR
model.

We also tested the null of a two-regime TAR model against the three-
regime alternative, using the test statistic

F, :T(SZ_SS)

3
where S5 is the sum of squared residuals from the estimated three-regime TAR.
The value of F»3 was 15.6 and the bootstrapped p-value was 0.216. Therefore, we
did not reject the null of a two-regime TAR model.

On the basis of these tests, we conclude that the two-regime threshold
model is the appropriate choice within the class of TAR models for GDP. Figure
1, the time series graph of quarterly real GDP growth rates, includes a dashed
horizontal line at the estimated threshold of —0.00167. Of the 236 observations, 30
fell below the threshold and 206 fell above the threshold. Thus, approximately 12-
percent of the observations fell into the ‘low-growth’ regime. Interestingly, this is
roughly the same proportion of quarters over the sample period that are NBER-
dated recession periods.® It is also interesting to note that the value of the
threshold is near zero and that the sum of the lag coefficients is positive (0.307) in

% The US economy has been in recession for 104 months between 1947Q1-2006Q1, according to
the NBER (www.nber.org). This represents almost 15% of the sample.
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the ‘high-growth’ regime but strongly negative (-1.363) in the low-growth
regime. These results are roughly in line with those reported by Potter (1995,
Table II). The point estimates of the AR coefficients in the low-growth regime
violate the stationarity condition. However, the interval estimates we present
below suggest that these coefficients are measured very imprecisely, which is not
surprising since there are only 30 observations in the low-growth regime.

The next issue is to construct confidence intervals for the TAR parameters.

4.2 Confidence intervals for the threshold

Figure 2 shows the value of the LR-statistic as a function of the potential threshold
values where:
SSR(z,) — SSR(7)

LR ==k ?)

(4.3)

In (4.3), SSR(7) is the sum of squared residuals from fitting the growth
rate of real GDP to a four-order, two-regime TAR model with delay parameter
equal to two and threshold equal to 1o and SSR(7 ) is the sum of squared residuals
from (4), i.e., 7 = —-0.00167 and SSR(7) = 0.0178. Hansen (1997) shows that
when evaluated at the true value of 7 LR(7) is asymptotically chi-square with one
degree of freedom. The 90%, 95% and 99% critical values for LR( 7)) are drawn as
horizontal dashed lines in Figure 2. It is clear from the figure that the change in
LR is quite pronounced around the estimated threshold t = —0.00167. The jump in
the function LR(7) is so sharp that the 90%, 95% and 99% confidence intervals,
which are found by inverting the likelihood ratio statistic, are precisely that same.
(Recall that the estimated threshold is only identified up to the observed values of
the dependent variable.) Specifically, the confidence intervals implied from the
asymptotic approximations are:

Asymptotic Confidence Intervals for 7

Low High
90% —0.00469 —0.00076
95% —0.00469 —0.00076
99% —0.00469 —0.00076

Since there is only one clear trough in the figure, there is fairly strong
evidence of a single threshold; in a three-regime model there should be two
distinct threshold values. In other words, Figure 2 is consistent with the formal
test results we presented above regarding the appropriate number of regimes.
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Figure 2: Confidence Intervals for the Threshold
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We bootstrapped equation (4.2) 2500 times, generating the 2500 bootstrap
estimates of the threshold. Retaining only the middle 90%, 95% and 99% of the
ordered threshold estimates yielded the bootstrap percentile confidence intervals
shown below. Note that these intervals are far larger than the confidence intervals
reported above and always span 7 = 0. In fact, the 99% confidence interval
constructed using the percentile method spans nearly all of the data set.

Bootstrap Percentile Confidence Intervals for 7

Low High
90% —0.00289 0.00097
95% —0.00348 0.00443
99% —0.00486 0.01577

Finally, since LR(7) is an asymptotically pivotal statistic, we also
bootstrapped the 90%, 95% and 99% critical values of its distribution and used
these to construct the confidence intervals for 7. The 90% (and, therefore, 95%
and 99%) critical values were so large that all of the data points that were
candidate threshold values fell into each of these intervals. Consequently, the
threshold confidence intervals implied by this procedure went from the 10-th
percentile of the data (-0.00469) to the 90-th percentile of the data (0.01961). This
is consistent with our simulation indicating that the actual coverage of the 90%
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bootstrap-LR intervals for the threshold in the D-TAR model were 100% for each
parameter configuration we considered.

Bootstrap-LR Confidence Intervals for t

Low High
90% —0.00469 0.01961
95% —0.00469 0.01961
99% —0.00469 0.01961

Our conclusion is that the evidence to support the claim that the threshold
for real US GDP growth is negative is not very compelling. Although we cannot
reject the null hypothesis of threshold behavior, the problem is to produce a
reliable confidence interval for the threshold parameter. When we construct
confidence intervals using an asymptotic approximation we can rule out the
possibility of a positive threshold. However, the bootstrap methodology does not
support the assertion that the time-series properties of negative growth rates
behave differently from positive growth rates.

4.3 Confidence intervals for the slope parameters

Although there are four lags in the model, we focus on the two first-order slope
coefficients and the sum of the slope coefficients within each regime as these
sums are a measure of within-regime persistence. The two first-order slope
coefficients are 0.320 and 0.208 with #-statistics of 4.38 and 1.53, respectively,
and standard errors of 0.0729 and 0.1352, respectively. Since we use a consistent
estimate of the threshold, asymptotically valid confidence intervals for these slope
coefficients can be constructed using the percentiles of the normal distribution.
The 90%, 95% and 99% confidence intervals for the two slope coefficients (called
oy and f) using the normal approximation are reported in the top-left portion of
Table 5. For example, the 95% confidence intervals for a; and £; run from 0.1908
to 0.4727 and from —0.0574 to 0.4725, respectively.

The 2500 bootstrap replications of equation (4.2) also gave us 2500
bootstrap estimates of the two first-order slope coefficients. Retaining only the
middle 90%, 95% and 99% of the ordered slope coefficients yielded the percentile
confidence intervals reported in the top-middle portion of Table 5. For each
bootstrapped series, we also constructed the bootstrap ¢-statistic for the null
hypothesis o1 = 0.320 and S, = 0.208. This bootstrap z-statistic allows us to ‘back-
out’ the confidence intervals reported in the top-right portion of Table 5.

As shown in Table 5, the confidence intervals for the slope coefficient ¢
are roughly the same, both in location and length, across the three procedures. All
three include only positive values of ;. Closer inspection shows that the intervals

Plished ¥l'he Brkleyectroit Press,2007



18

for a; constructed from the normal approximation are slightly shifted to the right
relative to those constructed from the bootstrap-percentile and the intervals for ¢
constructed from the bootstrap-¢ are slightly shifted to the right relative to those
constructed from the normal approximation. The confidence intervals for the slope
coefficient f; show less uniformity across methods. However, for any given
method and coverage rate, the interval for f; is larger than the interval for ¢;. In
fact, f; < 0 is in the 95% confidence interval constructed from each of the three
methods. In addition, note that the percentile method yielded 95% and 99%
confidence intervals for S that fully contain the confidence intervals constructed
from the two other methods. Also, each confidence interval for f; constructed
from the normal approximation is contained within the corresponding interval
constructed from the bootstrap-¢. Thus, the percentile method appears to be the
most conservative method, and the normal approximation appears to be the least

TABLE 5: Confidence Intervals for the Slope and the Persistence Coefficients in
the D-TAR Model of GDP

Normal Approx. BS-Percentile Bootstrap-¢
Slope lower upper lower upper lower  upper
Coefficients bound bound  bound bound bound bound
(24]
90% 0.2136 0.4500  0.2070 0.4388 0.2200 0.4614
95% 0.1908 0.4727  0.1788 0.4656 0.1919  0.4865
99% 0.1470 0.5165  0.1060 0.5238 0.1408 0.5539
i

90% 0.0147 0.4298  0.1005 0.4912 -0.0320 0.4433
95% -0.0574 04725  -0.1827 0.5479 -0.0828  0.4987
99% -0.1398  0.5549  -0.3962 0.7245 -0.1795  0.6042
Persistence  lower upper lower upper lower  upper
bound bound  bound bound bound bound

V2 2 T
90% 0.1183 0.4974  0.0760 0.4708 0.1248  0.5280
95% 0.0819 0.5339  0.0323 0.5093 0.0862 0.5689
99% 0.0115 0.6042  -0.2643 0.5902 0.0124  0.6381

V2 < T
90% -1.9791  -0.7478 -2.0471 -0.5655  -2.1810 -0.6691
95% -2.0974  -0.6294 -2.2018  -0.0472  -3.2648 -0.5373

99% -2.3259  -0.4010  -2.5048 0.3608 -6.6580 -0.3275
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conservative method, to obtain the confidence intervals for f;. The percentile
method seems to exacerbate the effect of poorly estimated coefficients.

Perhaps, the more important results concern those pertaining to the sum of
the lagged coefficients in each regime since this sum is an indication of the degree
of persistence within a regime. The confidence intervals for the persistence
parameter in the high-growth regime are roughly the same, both in location and
length, across the three procedures. All three include only positive values of this
parameter, with the exception of the 99% interval constructed using the bootstrap-
percentile procedure. Closer inspection shows that the intervals for the high-
growth persistence parameter constructed from the normal approximation are
slightly shifted to the right relative to those constructed from the bootstrap-
percentile procedure and the intervals for the high-growth persistence parameter
constructed from the bootstrap-t procedure are slightly shifted to the right relative
to those constructed from the normal approximation. Notice that the confidence
intervals for persistence in the high-growth regime are far tighter than those for
the corresponding intervals in the low-growth regime. For example, a 95%
confidence interval for the persistence parameter using the normal approximation
runs from 0.0819 to 0.5339 for the high-growth regime, and from —2.0974 to
—0.6294 for the low-growth regime. This is not very surprising given the relatively
small number of observations that define the low-growth regime. All of the low-
growth intervals contain only negative values of the persistence parameter, except
for the 99% interval constructed using the bootstrap-percentile procedure.

4.4 The C-TAR model

Since there is no a priori way of knowing whether real GDP growth is a C-TAR
or a D-TAR process, we also estimated y, as a continuous threshold process in the
form of (2.2). A lag length of two and a delay parameter of two provided the best
fitting C-TAR model, resulting in:

vi=7 +1;[0.358(y.1— ) + 0.213(yi2— 7)] 4.3)
(3.97) (2.52)
+ (1-1,)[0.242(y;.1—7)—0.089(y.2—7)] + &
(2.54) (-0.831)
Lif y,27
r=0.00571; I, = _ ; aic =-908.37 rss =0.0199
0 if y, <t
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In comparing this C-TAR model to the D-TAR model in (4.2), notice that
the aic selects the D-TAR model even though the C-TAR model is far more
parsimonious. The difference, however, is not very large. The first-order
autoregressive coefficients in the high and low-growth regimes are quite similar
across the fitted C-TAR and D-TAR models. However, the estimated threshold is
positive in the fitted C-TAR model. Figure 3 shows the value of the LR-statistic
constructed from (4.3) as a function of the potential threshold values.

Figure 3: Confidence Intervals for the GDP C-TAR Model
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Table 6 provides the confidence intervals for the slope parameter in the
high and low-growth regimes constructed from the normal approximation, the
bootstrap-percentile and bootstrap-t procedures. The confidence intervals for each
of the slope coefficients, ¢ and f, are roughly the same, both in location and
length, across the three procedures. All include only positive values of ¢ and,
except for the 99% intervals constructed using the methods, only positive values
of f. Closer inspection shows that every interval for ¢; and f; constructed from
the normal approximation is contained within the corresponding intervals
constructed from the two bootstrap procedures. Every interval for ¢; constructed
from the bootstrap percentile method is slightly shifted to the left relative to the
corresponding interval constructed from the bootstrap-t method. Every interval for
S constructed from the bootstrap percentile method contains the corresponding
interval constructed from the bootstrap-f method.
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Table 6 also provides the confidence intervals for the persistence
parameter in the high and low-growth regimes constructed from the normal
approximation, the bootstrap-percentile and bootstrap-# procedures. These
intervals behave in most respects like the intervals for the persistence parameters
in the D-TAR model. The confidence intervals for the persistence parameter in the
high-growth regime are roughly the same, both in location and length, across the
three procedures. All three include only positive values of this parameter, with the
exception of the 99% interval constructed using the bootstrap-percentile
procedure. The intervals for the high-growth persistence parameter constructed
from the normal approximation are generally slightly shifted to the right relative
to those constructed from the bootstrap-percentile procedure and the intervals for
the high-growth persistence parameter constructed from the bootstrap-t procedure
are generally slightly shifted to the right relative to those constructed from the
normal approximation.

TABLE 6: Confidence Intervals for the Slope and the Persistence Coefficients in
the C-TAR Model of GDP

Normal Approx. BS-Percentile Bootstrap-t
Slope lower upper lower upper lower upper
Coefficients bound bound bound bound bound bound
(*5]
90% 0.21022 0.50658  0.19422 0.51334 0.19486 0.53114
95% 0.18174 0.53507  0.15628 0.53740 0.16646 0.57212
99% 0.12676  0.59005  0.08998 0.58954 0.11999 0.63253
B1

90% 0.08896 0.40053  0.04527 0.45727 0.05735 0.42427
95% 0.05902 0.43048 0.00012 0.51110 0.01486 0.45757
99% 0.00121 0.48828 -0.09890 0.6083  -0.0504 0.51218

Persistence lower upper lower upper lower upper

bound bound bound bound bound bound

V22T
90% 0.43015 0.71293  0.14308 0.53408 0.60507 0.85847
95% 0.40297 0.74011  0.07845 0.57148 0.57159 0.89065
99% 0.35051 0.79257 -0.01209 0.62456 0.51839 0.94490
Y2 < T

90% -0.07613 0.35835 -0.00261 0.42540 -0.29427 0.30599
95% -0.11789 0.40011 -0.05940 0.46373 -0.37596 0.36792
99% -0.19850 0.48072 -0.22295 0.53570 -0.56542 0.50131
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The confidence intervals for the persistence parameter in the high-growth
regime constructed using the bootstrap percentile method tend to be much larger
than the corresponding intervals constructed using the normal approximation
which, in turn, tend to be slightly larger than the intervals constructed using the
bootstrap-t method. The confidence intervals for the persistence parameter in the
high-growth regime are far tighter than those for the corresponding intervals in the
low-growth regime. All of the low-growth intervals contain zero. The bootstrap-¢
intervals for the persistence parameter in the low-growth regime are much larger
than the corresponding intervals constructed using the normal approximation
which, in turn, tend be slightly larger than the intervals constructed using the
bootstrap-percentile methods. The intervals for the high-growth persistence
parameter constructed from the normal approximation are generally shifted to the
right relative to those constructed from the bootstrap-f procedure and the intervals
for o constructed from the bootstrap-percentile procedure are generally shifted to
the right relative to those constructed from the normal approximation.

As shown in Table 7, the 90%, 95% and 99% confidence intervals for =
using the asymptotic approximation are fairly tight. However, those formed using
the percentile method are even tighter, being fully contained within those formed
using the asymptotic approximation. For both methods, the confidence intervals
for 7 are such that they rule out the plausibility of a negative threshold. As in the
D-TAR model, the confidence intervals formed from the bootstrap-LR method are
essentially non-informative in that they span the entire range of potential
thresholds.’

Table 7: Confidence Intervals for the Threshold in the C-TAR Model of GDP

Normal BS-Percentile Bootstrap-LR
Approximation
lower upper lower  upper lower upper
bound bound bound bound bound bound
90% 0.00237  0.01148 0.00350 0.00941 —0.00469 0.01961
95% 0.00172  0.01203 0.00283 0.01013 -0.00469 0.01961
99% 0.00005  0.01264 0.00114 0.01201 —0.00469 0.01961

® We do not report confidence intervals for the autoregressive coefficients since ¢ is so similar to

B
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5. Summary and Conclusions

Monte Carlo methods were applied to study the finite-sample performance of
standard regression approaches to confidence interval construction in threshold
autoregressive models. More specifically, intervals based upon asymptotic
approximations and bootstrap methods were generated for the coefficients in the
stationary, first-order, threshold autoregressive model. Interval coverage
probabilities were used to measure the quality of the various procedures. When
the true threshold is unknown, and is estimated along with the slope parameters,
none of the procedures provide intervals for the slope coefficients with good
coverage properties over the full range of parameters considered. Standard-¢
intervals performed especially poorly in this case.

Confidence intervals for the threshold parameter itself were constructed by
inversion of the asymptotic distribution of the likelihood ratio statistic, by
inversion of the bootstrap distribution of the likelihood ratio statistic, and by the
bootstrap-percentile method. None of the procedures perform satisfactorily across
the full range of parameter values. Interestingly, the bootstrap-LR procedure
generated overly large confidence intervals with nearly 100% actual coverage for
each parameterization of the D-TAR. This suggests that the bootstrap-LR
procedure may not be very useful in D-TAR models. However, the bootstrap-LR
procedure worked reasonably well, and better than the other procedures, for
constructing confidence intervals for the slope coefficients.

We applied these procedures to obtain confidence intervals for the slope
and threshold coefficients in a D-TAR model of real GDP growth rates, a model
similar to the one estimated by Potter (1995) where he assumed that the threshold
growth rate is zero. The confidence intervals for the threshold constructed using
asymptotic theory always excluded zero and other nonnegative numbers.
However, bootstrapped confidence intervals included zero, positive, and negative
values for the threshold. The intervals from the bootstrapped likelihood ratio were
so large that all candidate thresholds are included in these intervals. This is in line
with our simulation results. Intervals for the slope coefficients appear to be more
stable across the three procedures considered.

One message of the paper is that when the threshold parameter is
unknown, asymptotic and bootstrap approximations of finite sample distributions
do not lead to satisfactory confidence intervals for slope or threshold parameters
in stationary TAR models. Since inference in a TAR model is problematic,
caution must be exercised in applications attempting to conduct inference in
threshold models.
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